4.7 Article

Identification of Activated Cdc42-Associated Kinase Inhibitors as Potential Anticancer Agents Using Pharmacoinformatic Approaches

Journal

BIOMOLECULES
Volume 13, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/biom13020217

Keywords

ACK1; pharmacophore modeling; docking; molecular dynamics simulations; cancer; inhibitor

Ask authors/readers for more resources

In this study, a pharmacophore model (PM) was developed based on two inhibitors and ACK1 crystal structures. The PM was used to screen a drug-like database, and the binding mode of the selected compounds was predicted through molecular docking and molecular dynamics simulations. The results showed that the hit compounds had higher binding affinity to ACK1 compared to dasatinib, a known multi-kinase inhibitor. The compounds formed desirable hydrogen bond interactions with key residues. These findings suggest that the proposed scaffolds could be used for the design of selective ACK1 inhibitors.
Background: Activated Cdc42-associated kinase (ACK1) is essential for numerous cellular functions, such as growth, proliferation, and migration. ACK1 signaling occurs through multiple receptor tyrosine kinases; therefore, its inhibition can provide effective antiproliferative effects against multiple human cancers. A number of ACK1-specific inhibitors were designed and discovered in the previous decade, but none have reached the clinic. Potent and selective ACK1 inhibitors are urgently needed. Methods: In the present investigation, the pharmacophore model (PM) was rationally built utilizing two distinct inhibitors coupled with ACK1 crystal structures. The generated PM was utilized to screen the drug-like database generated from the four chemical databases. The binding mode of pharmacophore-mapped compounds was predicted using a molecular docking (MD) study. The selected hit-protein complexes from MD were studied under all-atom molecular dynamics simulations (MDS) for 500 ns. The obtained trajectories were ranked using binding free energy calculations (Delta G kJ/mol) and Gibb's free energy landscape. Results: Our results indicate that the three hit compounds displayed higher binding affinity toward ACK1 when compared with the known multi-kinase inhibitor dasatinib. The inter-molecular interactions of Hit1 and Hit3 reveal that compounds form desirable hydrogen bond interactions with gatekeeper T205, hinge region A208, and DFG motif D270. As a result, we anticipate that the proposed scaffolds might help in the design of promising selective ACK1 inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available