4.7 Article

Analysis and Identification of Bioactive Compounds of Cannabinoids in Silico for Inhibition of SARS-CoV-2 and SARS-CoV

Journal

BIOMOLECULES
Volume 12, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/biom12121729

Keywords

SARS-CoV-2; CBNA; luteolin; natural product; in silico

Ask authors/readers for more resources

Despite discrepancies in vaccine distribution and limited production capacity, the majority of the world's population remains unvaccinated. This study explored the potential of luteolin and other compounds to interact with the active site of the SARS-CoV-2 and SARS-CoV complex, suggesting their potential as inhibitors against coronavirus infections. Further research is needed to validate these findings.
Despite the approval of multiple vaccinations in different countries, the majority of the world's population remains unvaccinated due to discrepancies in vaccine distribution and limited production capacity. The SARS-CoV-2 RBD-ACE2 complex (receptor binding domain that binds to ACE2) could be a suitable target for the development of a vaccine or an inhibitor. Various natural products have been used against SARS-CoV-2. Here, we docked 42 active cannabinoids to the active site of the SARS-CoV-2 and SARS-CoV complex of RBD-ACE2. To ensure the flexibility and stability of the complex produced after docking, the top three ligand molecules with the best overall binding energies were further analyzed through molecular dynamic simulation (MDS). Then, we used the webserver Swissadme program and binding free energy to calculate and estimate the MMPBSA and ADME characteristics. Our results showed that luteolin, CBGVA, and CBNA were the top three molecules that interact with the SARS-CoV-2 RBD-ACE2 complex, while luteolin, stigmasterol, and CBNA had the strongest contact with that SARS-CoV. Our findings show that luteolin may be a potential inhibitor of infections caused by coronavirus-like pathogens such as COVID-19, although further in vivo and in vitro research is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available