4.8 Article

Mic10 Oligomerizes to Bend Mitochondrial Inner Membranes at Cristae Junctions

Journal

CELL METABOLISM
Volume 21, Issue 5, Pages 756-763

Publisher

CELL PRESS
DOI: 10.1016/j.cmet.2015.04.006

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 803, FOR 1905]
  2. Center for Nanoscale Microscopy and Molecular Physiology of the Brain

Ask authors/readers for more resources

The mitochondrial inner membrane is highly folded and displays a complex molecular architecture. Cristae junctions are highly curved tubular openings that separate cristae membrane invaginations from the surrounding boundary membrane. Despite their central role in many vital cellular processes like apoptosis, the details of cristae junction formation remain elusive. Here we identify Mic10, a core subunit of the recently discovered MICOS complex, as an inner mitochondrial membrane protein with the ability to change membrane morphology in vitro and in vivo. We show that Mic10 spans the inner membrane in a hairpin topology and that its ability to sculpt membranes depends on oligomerization through a glycine-rich motif. Oligomerization mutants fail to induce curvature in model membranes, and when expressed in yeast, mitochondria display an altered inner membrane architecture characterized by drastically decreased numbers of cristae junctions. Thus, we demonstrate that membrane sculpting by Mic10 is essential for cristae junction formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available