4.7 Article

Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing

Journal

VIRTUAL AND PHYSICAL PROTOTYPING
Volume 18, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2023.2166851

Keywords

DLP; multifunctional metamaterial; microlattice; sound absorption; mechanical property

Ask authors/readers for more resources

This study proposes a novel multifunctional microlattice metamaterial based on a hollow truss-plate hybrid design, which is realized by digital light processing 3D printing. Experimental results show that this material exhibits excellent sound absorption and mechanical properties, achieving quasi-perfect sound absorption and broadband half-absorption. The sound-absorbing capacity relies on the designed cascaded Helmholtz-like resonators, and the physical mechanisms behind the absorptive behaviors are revealed through numerical analyses. Additionally, this material displays superior modulus and strength compared to conventional cellular materials and modified microlattices, attributed to the near-membrane stress state of the plate architecture and the mechanically robust behavior of the hollow struts. This work presents an effective approach for designing and engineering multifunctional metamaterials through 3D printing.
It is of significance, but still remains a key challenge, to attain excellent sound-absorbing and mechanical properties in a material simultaneously. To overcome this challenge, herein, novel multifunctional microlattice metamaterials based on a hollow truss-plate hybrid design are proposed and then realised by digital light processing 3D printing. Quasi-perfect sound absorption ( alpha > 0.999) and broadband half-absorption have been measured. The sound-absorbing capacity is verified to be based on the designed cascaded Helmholtz-like resonators. Physical mechanisms behind the absorptive behaviours are fully revealed by numerical analyses. The present microlattices also display superior modulus and strength to the conventional cellular materials and modified microlattices, which is attributed to their near-membrane stress state of the plate architecture. The mechanically robust behaviour of the present microlattices in turn derives from the hollow struts. This work represents an effective approach for the design and engineering of multifunctional metamaterials through 3D printing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available