4.7 Article

Antioxidants, Antimicrobial, and Anticancer Activities of Purified Chitinase of Talaromyces funiculosus Strain CBS 129594 Biosynthesized Using Crustacean Bio-Wastes

Journal

AGRONOMY-BASEL
Volume 12, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy12112818

Keywords

marine waste; solid state fermentation; antioxidant; antimicrobial; anticancer

Funding

  1. King Faisal University, Saudi Arabia
  2. [1815]

Ask authors/readers for more resources

This study aimed to optimize the production of chitinase using crustacean bio-wastes and to evaluate its antioxidant, antimicrobial, and anticancer activities. The results showed that under specific conditions, the maximum enzyme yield was achieved and the purified enzyme exhibited strong antioxidant, antibacterial, and cytotoxic effects.
Talaromyces funiculosus strain CBS 129594 was optimized to promote chitinase activity under solid state fermentation using crustacean bio-wastes. The aim of the study was to use purified chitinase as antioxidant, antimicrobial, and anticancer activities. The results showed that the maximum enzyme yield (2.98 +/- 0.2 U/g substrate) was obtained at 1:2 crab shell chitin with the inoculation size (2.5 x 10(6) v/v) after seven days of incubation, pH 6.5, using 0.20% of soybean meal, malt extract, and yeast extract and 100% cane and beet molasses as supplementation. The enzyme was purified with an overall yield of 7.22 purification fold with a specific activity of 9.32 +/- 0.3 U/mg protein. The molecular mass of the purified chitinase was 45 kDa. The highest chitinase activity was detected at pH 6.5 and 40 degrees C. The purified chitinase was activated by Ca2+, Cu2+, Na+, Mn2+, and Mg2+. On the other hand, the enzyme activity was inhibited in the presence of Hg2+, Ag2+, and Li+ at 10 mM, while Zn2+ and Co2+ caused no effect compared to media without any metals. The scavenging of 2.2-diphenyl-1-picrylhydrazyl (DPPH) radicals and 2.2-pheny-l-1-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) increased with increasing the concentrations of the purified chitinase enzyme (100, 200, 300, and 400 mu g/mL) which ranged from 48.7% to 57.8% and 8.87% to 63.73%, respectively. The IC50 value of DPPH radicals and ABTS of purified chitinase produced by T. funiculosus strain CBS 129594 was 199 and 306 mu g/mL concentration, respectively. The purified chitinase inhibited the growth of Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli), Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus), and fungi (Aspergillus niger, Candida albicans). The highest concentrations of purified chitinase (1000 mu g/mL) caused the higher toxicity of cancer cell line MCF7 (97%), HCT116 (88.2%), and HepG2 (97.1%). In conclusion, we can conclude that chitinase can be produced from marine waste and can be used as an antioxidant, antibacterial activity, cancer therapy, and ecofriendly biocontrol agent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available