4.7 Article

Population Structure and Genetic Diversity of Colletotrichum gloeosporioides on Citrus in China

Journal

AGRONOMY-BASEL
Volume 13, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy13010184

Keywords

Colletotrichum gloeosporioides; genetic structure; GAPDH sequence; haplotype

Ask authors/readers for more resources

In this study, the genetic structure and diversity of Colletotrichum gloeosporioides, the dominant species causing citrus anthracnose, were analyzed using the Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. A total of 19 GAPDH haplotypes were identified, with the main haplotype (haplotype 5) distributed widely among isolates from different Citrus species and locations. The genetic differentiation index (Fst) revealed significant genetic differentiation between populations from different regions and host species. The results suggest that genetic differentiation in C. gloeosporioides is mainly influenced by gene mutation, recombination, or migration within native populations rather than natural selection caused by geography or host variety.
To analyze the genetic structure and genetic diversity of Colletotrichum gloeosporioides as the dominant Colletotrichum species on Citrus, the Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genetic diversity, including 63 strains isolated and selected from 8 different sites and 5 different citrus species, was studied. A total of 19 GAPDH haplotypes were identified by genetic analysis, and the main haplotype (haplotype 5) was distributed in 28 isolates, mainly from Citrus unchiu Hort. ex Tanaka (WG) and Citrus reticulata Blanco cv. Succosa (BDZ) in Huangyan (HY), Linhai (LH), and Jiande (JD) of Zhejiang province, and Mashui tangerine (MSJ) in Mengshan of Guangxi province (GX). Using the genetic differentiation index, Fst revealed significant genetic differentiation in C. gloeosporioides populations between Jiangxi province (JXGZ) and GX, HY, LH, JD, and Chun'an (CA) of Zhejiang province, and also revealed slightly less genetic differentiation for C. gloeosporioides populations between HY, LH, JD, GX, Shaanxi province (SX), and Quzhou (QZ) of Zhejiang province. In addition, Fst revealed great genetic differentiation between the C. gloeosporioides populations obtained from MSJ and Citrus paradise Macf (PTY), and also revealed weak genetic differentiation between the C. gloeosporioides populations obtained from Citrus sinensis Osbeck (QC), WG, and BDZ. The AMOVA test showed that the levels of genetic differentiation for C. gloeosporioides were 19% and 81% among and within geographic populations, respectively. It also showed that C. gloeosporioides had levels of genetic differentiation among and within host populations of 12% and 88%, respectively. The Mantel test showed that the genetic distance was not linearly correlated with geographical distance and the haplotype phylogenetic analysis showed that C. gloeosporioides from different regions and hosts were scattered in the phylogenetic tree, implying that the genetic differentiation was independent of host variety and geographical origin. We speculated that genetic differentiation may be mainly due to gene mutation, gene recombination, or gene migration within native populations and has nothing to do with natural selection triggered by geography or host variety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available