4.7 Article

Delivery of Cardiolipins to the Salmonella Outer Membrane Is Necessary for Survival within Host Tissues and Virulence

Journal

CELL HOST & MICROBE
Volume 17, Issue 4, Pages 441-451

Publisher

CELL PRESS
DOI: 10.1016/j.chom.2015.03.003

Keywords

-

Funding

  1. National Institutes of Health (NIH) Ruth L. Kirschstein National Research Service Award [F32AI096820]
  2. NIH [R01AI030479]

Ask authors/readers for more resources

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that serves as a barrier to the environment. During infection, Gram-negative bacteria remodel their OM to promote survival and replication within host tissues. Salmonella rely on the PhoPQ two-component regulators to coordinate OM remodeling in response to environmental cues. In a screen for mediators of PhoPQ-regulated OM remodeling in Salmonella Typhimurium, we identified PbgA, a periplasmic domain-containing transmembrane protein, which binds cardiolipin glycerophospholipids near the inner membrane and promotes their PhoPQ-regulated trafficking to the OM. Purified-PbgA oligomers are tetrameric, and the periplasmic domain contains a globular region that binds to the OM in a PhoPQ-dependent manner. Thus, PbgA forms a complex that may bridge the envelope for regulated cardiolipin delivery. PbgA globular region-deleted mutant bacteria are severely attenuated for pathogenesis, suggesting that increased cardiolipin trafficking to the OM is necessary for Salmonella to survive within host tissues that activate PhoPQ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available