4.7 Article

Analysis of the Genetic Diversity of Two Rhopalosiphum Species from China and Europe Based on Nuclear and Mitochondrial Genes

Journal

INSECTS
Volume 14, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/insects14010057

Keywords

EF-1 alpha; genetic differentiation; geographical region; mtDNA; Rhopalosiphum maidis; Rhopalosiphum padi

Categories

Ask authors/readers for more resources

Population genetic studies provide insights into the evolution of adaptive strategies and the influence of environmental factors on aphid populations. This study analyzed the genetic diversity of two aphid species from China and Europe. The results showed genetic differentiation between Chinese and European populations in one species, while the other species had low genetic diversity indicating high gene flow. These findings are important for the development of pest control strategies.
Population genetic studies can reveal clues about the evolution of adaptive strategies of aphid species in agroecosystems and demonstrate the influence of environmental factors on the genetic diversity and gene flow among aphid populations. To investigate the genetic diversity of two Rhopalosiphum aphid species from different geographical regions, 32 populations (n = 535) of the bird cherry-oat aphid (Rhopalosiphum padi Linnaeus) and 38 populations (n = 808) of the corn leaf aphid (Rhopalosiphum maidis Fitch) from China and Europe were analyzed using one nuclear (elongation factor-1 alpha) and two mitochondrial (cytochrome oxidase I and II) genes. Based on the COI-COII sequencing, two obvious clades between Chinese and European populations and a low level of gene flow (Nm = 0.15) were detected in R. padi, while no geographical-associated genetic variation was found for EF-1 alpha in this species. All genes in R. maidis had low genetic variation, indicating a high level of gene flow (Nm = 5.31 of COI-COII and Nm = 2.89 of EF-1 alpha). Based on the mitochondrial result of R. padi, we concluded that the long distance between China and Europe may be interrupting the gene flow. The discordant results of nuclear gene analyses in R. padi may be due to the slower evolution of nuclear genes compared to mitochondrial genes. The gene exchange may occur gradually with the potential for continuous migration of the aphid. This study facilitates the design of control strategies for these pests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available