4.6 Article

Handcrafted Deep-Feature-Based Brain Tumor Detection and Classification Using MRI Images

Journal

ELECTRONICS
Volume 11, Issue 24, Pages -

Publisher

MDPI
DOI: 10.3390/electronics11244178

Keywords

deep-learning-based brain tumor detection and classification model; chicken swarm optimization; Residual Network (ResNet)

Ask authors/readers for more resources

This study aims to develop an automated model for the detection and classification of brain tumors based on deep learning using MRI data. The method involves preprocessing, segmentation, feature extraction, and classification, and incorporates advanced techniques and approaches to improve diagnostic performance.
An abnormal growth of cells in the brain, often known as a brain tumor, has the potential to develop into cancer. Carcinogenesis of glial cells in the brain and spinal cord is the root cause of gliomas, which are the most prevalent type of primary brain tumor. After receiving a diagnosis of glioblastoma, it is anticipated that the average patient will have a survival time of less than 14 months. Magnetic resonance imaging (MRI) is a well-known non-invasive imaging technology that can detect brain tumors and gives a variety of tissue contrasts in each imaging modality. Until recently, only neuroradiologists were capable of performing the tedious and time-consuming task of manually segmenting and analyzing structural MRI scans of brain tumors. This was because neuroradiologists have specialized training in this area. The development of comprehensive and automatic segmentation methods for brain tumors will have a significant impact on both the diagnosis and treatment of brain tumors. It is now possible to recognize tumors in photographs because of developments in computer-aided design (CAD), machine learning (ML), and deep learning (DL) approaches. The purpose of this study is to develop, through the application of MRI data, an automated model for the detection and classification of brain tumors based on deep learning (DLBTDC-MRI). Using the DLBTDC-MRI method, brain tumors can be detected and characterized at various stages of their progression. Preprocessing, segmentation, feature extraction, and classification are all included in the DLBTDC-MRI methodology that is supplied. The use of adaptive fuzzy filtering, often known as AFF, as a preprocessing technique for photos, results in less noise and higher-quality MRI scans. A method referred to as chicken swarm optimization (CSO) was used to segment MRI images. This method utilizes Tsallis entropy-based image segmentation to locate parts of the brain that have been injured. In addition to this, a Residual Network (ResNet) that combines handcrafted features with deep features was used to produce a meaningful collection of feature vectors. A classifier developed by combining DLBTDC-MRI and CSO can finally be used to diagnose brain tumors. To assess the enhanced performance of brain tumor categorization, a large number of simulations were run on the BRATS 2015 dataset. It would appear, based on the findings of these trials, that the DLBTDC-MRI method is superior to other contemporary procedures in many respects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available