4.6 Article

Chemical Analysis and Quality Assessment of Honey Obtained from Different Sources

Journal

PROCESSES
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/pr10122554

Keywords

honey; acidity; carbohydrates; protein; metals

Ask authors/readers for more resources

"This study evaluates the quality of bee honey from different sources through sensory analysis and chemical testing. The results show that the honey samples meet the quality regulations for commercial products. The observed variations can be attributed to the difference in plant species, harvesting period, and environmental pollutants. The study also identifies correlations between physico-chemical parameters and metal content."
The purpose of this paper was to evaluate the quality of bee honey from different sources: beekeeper, local market and organic honey. Sensory analysis was performed and the water content, pH, acidity, protein content and total metal content (Cu, Cr, Mn, Co, Ni, Pb, Cd, Fe) were determined. The sensory analysis was carried out by a group of untrained panelists for quality assessment of honey. The metal content was determined by graphite atomic absorption spectrometry (GTAAS). Mineralization was carried out in a microwave digestion system, in a high-pressure polytetrafluoroethylene (PTFE) vessel, using a standard acid-digestion protocol. The results regarding the physico-chemical parameters showed that the honey samples were in accordance with the quality regulations for honey as a commercial product. The concentration of metals in the investigated honey samples varied in the order Cu > Cr > Pb > Fe > Ni > Mn > Co > Cd, the values being within the limits established by the EU Commission (No. 1881/2006). The variations observed in the evaluated parameters can be caused by the difference in plant species from which the honey comes, the harvesting period and the level of environmental pollutants. The Pearson correlations between the physico-chemical parameters and the metals indicate that water content (w(c)) is strongly negatively correlated with Cd and Ni, while pH is strongly positively correlated with Mn and Fe. Moreover, EC is strongly negatively correlated with Ni and Fe, and the Brix degrees are strongly positively correlated with Cd and Ni. Statistically significant positive correlation was found between Brix-Cd, Ni-Cd and Cu-Cr and a statistically significant negative correlation was detected between w(c) and Cd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available