4.6 Article

Cytotoxicity and Thermal Characterization Assessment of Excipients for the Development of Innovative Lyophilized Formulations for Oncological Applications

Journal

PROCESSES
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/pr10122641

Keywords

freeze-drying; lyophilization; excipient; cytotoxicity; drug formulations; biopharmaceuticals

Ask authors/readers for more resources

Freeze-drying, also known as lyophilization, is advantageous for biopharmaceuticals but faces challenges that can be addressed with specific excipients. Research findings indicate that certain excipients can create uniform and solid lyophilized structures at lower concentrations, showing high tolerability by cell lines.
Freeze-drying, also known as lyophilization, significantly improves the storage, stability, shelf life, and clinical translation of biopharmaceuticals. On the downside, this process faces complex challenges, i.e., the presence of freezing and drying stresses for the active compounds, the uniformity and consistency of the final products, and the efficiency and safety of the reconstituted lyophilized formulations. All these requirements can be addressed by adding specific excipients that can protect and stabilize the active ingredient during lyophilization, assisting in the formation of solid structures without interfering with the biological and/or pharmaceutical action of the reconstituted products. However, these excipients, generally considered safe and inert, could play an active role in the formulation interacting with the biological cellular machinery and promoting toxicity. Any side effects should be carefully identified and characterized to better tune any treatments in terms of concentrations and administration times. In this work, various concentrations in the range of 1 to 100 mg/mL of cellobiose, lactose, sucrose, trehalose, isoleucine, glycine, methionine, dextran, mannitol, and (2-hydroxypropyl)-beta-cyclodextrin were evaluated in terms of their ability to create uniform and solid lyophilized structures. The freeze-dried products were then reconstituted in the appropriate cell culture media to assess their in vitro cytotoxicity on both a healthy cell line (B-lymphocytes) and their tumoral lymphoid counterpart (Daudi). Results showed that at 10 mg/mL, all the excipients demonstrated suitable lyophilized solid structures and high tolerability by both cell lines, while dextran was the only excipient well-tolerated also up to 100 mg/mL. An interesting result was shown for methionine, which even at 10 mg/mL, selectively affected the viability of the cancerous cell line only, opening future perspectives for antitumoral applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available