4.7 Article

Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects

Journal

PHARMACEUTICS
Volume 14, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14122683

Keywords

Cassiae semen; chemoprevention; inhibition; obtusifolin

Funding

  1. National Research Foundation of Korea, Ministry of Science and ICT, Republic of Korea
  2. Korea Institute of Science and Technology intramural research grant
  3. [NRF-2022R1A2C1008642]

Ask authors/readers for more resources

Obtusifolin, a major anthraquinone component in Cassia tora seeds, has been shown to have various biological activities. This study evaluated the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes and investigated their inhibitory mechanism and chemopreventive effects. The results showed that obtusifolin selectively inhibited CYP1A2 activity and exhibited potential chemopreventive effects.
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a K-i value of 0.031 mu M in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 mu M). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 mu M when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available