4.7 Article

Mouse Syngeneic Melanoma Model with Human Epidermal Growth Factor Receptor Expression

Journal

PHARMACEUTICS
Volume 14, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14112448

Keywords

human epidermal growth factor receptor; syngeneic mouse melanoma; Cloudman S91 (M3); preserved in vivo expression

Funding

  1. Russian Science Foundation
  2. [22-14-00094]

Ask authors/readers for more resources

In this study, we developed a mouse syngeneic melanoma model with preserved in vivo expression of human EGFR and tested its functionality. This model has important applications for high-throughput in vivo screening of EGFR-targeting agents.
The development of epidermal growth factor receptor (EGFR)-targeting agents for the treatment of malignant melanoma requires cheap and easy animal tumor models for high-throughput in vivo screening. Thus, the aim of this study was to develop mouse syngeneic melanoma model that expresses human EGFR. Cloudman S91 clone M3 mouse melanoma cells were transduced with lentiviral particles carrying the human EGFR gene followed by a multistep selection process. The resulting M3-EGFR has been tested for EGFR expression and functionality in vitro and in vivo. Radioligand assay confirmed the presence of 13,900 +/- 1500 EGF binding sites per cell at a dissociation constant of 5.3 +/- 1.4 nM. M3-EGFR demonstrated the ability to bind and internalize specifically and provide the anticipated intracellular nuclear import of three different EGFR-targeted modular nanotransporters designed for specific anti-cancer drug delivery. Introduction of the human EGFR gene did not alter the tumorigenicity of the offspring M3-EGFR cells in host immunocompetent DBA/2J mice. Preservation of the expression of EGFR in vivo was confirmed by immunohistochemistry. To sum up, we successfully developed the first mouse syngeneic melanoma model with preserved in vivo expression of human EGFR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available