4.7 Article

Antimicrobial Applications of Green Synthesized Bimetallic Nanoparticles from Ocimum basilicum

Journal

PHARMACEUTICS
Volume 14, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14112457

Keywords

bimetallic nanoparticles; Ocimum basilicum; phytoconstituents; antibiotic resistance; antimicrobial agents

Ask authors/readers for more resources

Antibiotic resistance is a significant concern for public health, and researchers are exploring new antibacterial strategies using nanotechnology. In this study, silver and platinum nanoparticles were synthesized using Ocimum basilicum leaf extract, which showed low cytotoxicity and strong antibacterial activity. These nanoparticles have the potential to be a natural, ecofriendly, and cost-effective alternative for combating bacterial infections.
Antibiotic resistance is an important and emerging alarm for public health that requires development of new potential antibacterial strategies. In recent years, nanoscale materials have emerged as an alternative way to fight pathogens. Many researchers have shown great interest in nanoparticles (NPs) using noble metals, such as silver, gold, and platinum, even though numerous nanomaterials have shown toxicity. To overcome the problem of toxicity, nanotechnology merged with green chemistry to synthesize nature-friendly nanoparticles from plants. Here, we describe the synthesis of NPs using silver (AgNPs) and platinum (PtNPs) alone or in combination (AgPtNPs) in the presence of Ocimum basilicum (O. basilicum) leaf extract. O. basilicum is a well-known medicinal plant with antibacterial compounds. A preliminary chemical-physical characterization of the extract was conducted. The size, shape and elemental analysis were carried out using UV-Visible spectroscopy, dynamic light scattering (DLS), and zeta potential. Transmission electron microscopy (TEM) confirmed polydisperse NPs with spherical shape. The size of the particles was approximately 59 nm, confirmed by DLS analysis, and the polydisperse index was 0.159. Fourier transform infrared (FTIR) demonstrated an effective and selective capping of the phytoconstituents on the NPs. The cytotoxic activities of AgNPs, PtNPs and AgPtNPs were assessed on different epithelial cell models, using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay, and discovered low toxicity, with a cell viability of 80%. The antibacterial potential of the NPs was evaluated against Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus) strains. Minimum inhibitory concentration (MIC) assays showed AgPtNP activity till the least concentration of NPs (3.15-1.56 mu g/mL) against ATCC, MS, and MDR E. coli, E. faecalis, and S. aureus and the Kirby-Bauer method showed that AgPtNPs gave a zone of inhibition for Gram-positive and Gram-negative bacteria in a range of 9-25 mm. In addition, we obtained AgPtNP synergistic activity in combination with vancomycin or ampicillin antibiotics. Taken together, these results indicate that bimetallic nanoparticles, synthesized from O. basilicum leaf extract, could represent a natural, ecofriendly, cheap, and safe method to produce alternative antibacterial strategies with low cytotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available