4.7 Review

Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering

Journal

PHARMACEUTICS
Volume 15, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics15020345

Keywords

RGD; peptides; nanomaterials; biomaterials; tissue engineering

Ask authors/readers for more resources

Tissue engineering is focused on restoring or replacing damaged tissues, and peptide self-assembly, particularly RGD peptides, is an effective method for developing tissue structures and functionalities. This review summarizes the progress of RGD application in tissue and organ development, examines its impact on TE efficacy in clinical and preclinical studies, and outlines recent advancements in the use of RGD functionalized biomaterials for tissue regeneration.
Tissue engineering (TE) is a rapidly expanding field aimed at restoring or replacing damaged tissues. In spite of significant advancements, the implementation of TE technologies requires the development of novel, highly biocompatible three-dimensional tissue structures. In this regard, the use of peptide self-assembly is an effective method for developing various tissue structures and surface functionalities. Specifically, the arginine-glycine-aspartic acid (RGD) family of peptides is known to be the most prominent ligand for extracellular integrin receptors. Due to their specific expression patterns in various human tissues and their tight association with various pathophysiological conditions, RGD peptides are suitable targets for tissue regeneration and treatment as well as organ replacement. Therefore, RGD-based ligands have been widely used in biomedical research. This review article summarizes the progress made in the application of RGD for tissue and organ development. Furthermore, we examine the effect of RGD peptide structure and sequence on the efficacy of TE in clinical and preclinical studies. Additionally, we outline the recent advancement in the use of RGD functionalized biomaterials for the regeneration of various tissues, including corneal repair, artificial neovascularization, and bone TE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available