4.7 Article

Multichannel Impedance Cytometry Downstream of Cell Separation by Deterministic Lateral Displacement to Quantify Macrophage Enrichment in Heterogeneous Samples

Journal

ADVANCED MATERIALS TECHNOLOGIES
Volume 8, Issue 8, Pages -

Publisher

WILEY
DOI: 10.1002/admt.202201463

Keywords

biophysical cytometry; cell separation; macrophages; microfluidic detection

Ask authors/readers for more resources

The integration of on-chip biophysical cytometry downstream of microfluidic enrichment allows for inline monitoring of phenotypic and separation metrics at single-cell sensitivity, enabling active control of separation and versatile application to different sample sets.
The integration of on-chip biophysical cytometry downstream of microfluidic enrichment for inline monitoring of phenotypic and separation metrics at single-cell sensitivity can allow for active control of separation and its application to versatile sample sets. Integration of impedance cytometry downstream of cell separation by deterministic lateral displacement (DLD) for enrichment of activated macrophages from a heterogeneous sample is presented, without the problems of biased sample loss and sample dilution caused by off-chip analysis. This requires designs to match cell/particle flow rates from DLD separation into the confined single-cell impedance cytometry stage, the balancing of flow resistances across the separation array width to maintain unidirectionality, and the utilization of co-flowing beads as calibrated internal standards for inline assessment of DLD separation and for impedance data normalization. Using a heterogeneous sample with un-activated and activated macrophages, wherein macrophage polarization during activation causes cell size enlargement, on-chip impedance cytometry is used to validate DLD enrichment of the activated subpopulation at the displaced outlet, based on the multiparametric characteristics of cell size distribution and impedance phase metrics. This hybrid platform can monitor the separation of specific subpopulations from cellular samples with wide size distributions, for active operational control and enhanced sample versatility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available