4.6 Article

Rescue of Misfolded Organic Cation Transporter 3 Variants

Journal

CELLS
Volume 12, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/cells12010039

Keywords

4-PBA; mu-pifithrin; 17-DMAG; progesterone; corticosterone; pharmacochaperoning; chemical chaperone

Categories

Ask authors/readers for more resources

Organic cation transporters (OCTs) are membrane proteins that uptake monoamines, cationic drugs and xenobiotics. In this study, the researchers investigated two potentially misfolded variants of organic cation transporter 3 (OCT3) and found that pre-treatment with the chemical chaperone 4-PBA led to increased membrane expression and transport capacity of the misfolded variants. This study provides proof of principle that folding-deficient SLC22 transporter variants, especially OCT3, can be rescued by chaperones.
Organic cation transporters (OCTs) are membrane proteins that take up monoamines, cationic drugs and xenobiotics. We previously reported novel missense mutations of organic cation transporter 3 (OCT3, SLC22A3), some with drastically impacted transport capabilities compared to wildtype. For some variants, this was due to ER retention and subsequent degradation of the misfolded transporter. For other transporter families, it was previously shown that treatment of misfolded variants with pharmacological and chemical chaperones could restore transport function to a certain degree. To investigate two potentially ER-bound, misfolded variants (D340G and R348W), we employed confocal and biochemical analyses. In addition, radiotracer uptake assays were conducted to assess whether pre-treatment with chaperones could restore transporter function. We show that pre-treatment of cells with the chemical chaperone 4-PBA (4-phenyl butyric acid) leads to increased membrane expression of misfolded variants and is associated with increased transport capacity of D340G (8-fold) and R348W (1.5 times) compared to untreated variants. We herein present proof of principle that folding-deficient SLC22 transporter variants, in particular those of OCT3, are amenable to rescue by chaperones. These findings need to be extended to other SLC22 members with corroborated disease associations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available