4.6 Article

Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia

Journal

CANCERS
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/cancers15030707

Keywords

sirtuins; statins; residual disease; bone marrow

Categories

Ask authors/readers for more resources

This study investigates the effects of pitavastatin in chemo-resistant ALL cells and provides evidence for the repurposing of this drug as a potential treatment for eliminating chemoresistant tumor cells. The results demonstrate that pitavastatin inhibits the proliferation of chemo-resistant ALL cells and induces apoptosis, highlighting its potential as a therapeutic agent in the treatment of chemo-resistant ALL.
Simple Summary Chemoresistance leads to poor prognostic outcomes in leukemic patients. Investigating the effects of pitavastatin in chemo-resistant ALL cells provides support for repurposing this FDA-approved drug to contribute to novel interventions to eradicate residual tumor cells that thrive in the protective niche of the bone marrow microenvironment. B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available