4.6 Review

DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities

Journal

CANCERS
Volume 15, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/cancers15020448

Keywords

ovarian cancer; DNA damage response; DNA repair; direct reversal repair; mismatch repair; nucleotide excision repair; base excision repair; homologous recombination; nonhomologous end joining; ATM; ATR; p53

Categories

Ask authors/readers for more resources

This article reviews the alterations in DNA damage response (DDR) pathways in ovarian cancer (OC), and the therapeutic potential of targeting the DDR for the treatment of OC. Failures in DDR have been associated with the development, progression, and chemoresistance of OC. Defects in DNA repair pathways, such as DNA double-strand break repair by homologous recombination and ARID1A mutations, have been found in different OC subtypes. Preclinical and clinical studies have shown promise in targeting the DDR to fight OC.
Simple Summary The DNA damage response (DDR) is frequently altered in ovarian cancer (OC), which can be exploited for therapeutic purposes. Moreover, targeting DDR signaling pathways has become an attractive strategy for increasing the effect of DNA-damaging drugs and overcoming chemoresistance. Here, we review the main DDR pathways and their alterations in OC. We also recapitulate the preclinical and clinical studies that target the DDR for the treatment of the disease. The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available