4.4 Article

The Lipid Raft-Associated Protein Stomatin Is Required for Accumulation of Dectin-1 in the Phagosomal Membrane and for Full Activity of Macrophages against Aspergillus fumigatus

Journal

MSPHERE
Volume 8, Issue 1, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/msphere.00523-22

Keywords

Aspergillus fumigatus; CRISPR; Cas9; dectin-1; phagosomal maturation; lipid rafts; phagocytosis; phagosomes; stomatin

Categories

Ask authors/readers for more resources

Alveolar macrophages are the first line of defense against the inhaled conidia of Aspergillus fumigatus. The conidia's pigment interferes with the formation of lipid rafts, preventing the formation of functional phagolysosomes. Stomatin, an integral membrane protein, plays a role in the recruitment of the beta-glucan receptor dectin-1 and in phagosomal maturation.
Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time. Previously, we showed that this conidial pigment interferes with the formation of flotillin-dependent lipid raft microdomains in the phagosomal membrane, thereby preventing the formation of functional phagolysosomes. Besides flotillins, stomatin is a major component of lipid rafts and can be targeted to the membrane. However, only limited information on stomatin is available, in particular on its role in defense against pathogens. To determine the function of this integral membrane protein, a stomatin-deficient macrophage line was generated by CRISPR/Cas9 gene editing. Immunofluorescence microscopy and flow cytometry revealed that stomatin contributes to the phagocytosis of conidia and is important for recruitment of the beta-glucan receptor dectin-1 to both the cytoplasmic membrane and phagosomal membrane. In stomatin knockout cells, fusion of phagosomes and lysosomes, recruitment of the vATPase to phagosomes, and tumor necrosis factor alpha (TNF-alpha) levels were reduced when cells were infected with pigmentless conidia. Thus, our data suggest that stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes.IMPORTANCE Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the beta-glucan receptor dectin-1 to the phagosomal membrane of macrophages. Furthermore, stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. The data provide new insights on the important role of stomatin in the immune response against human-pathogenic fungi. Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the beta-glucan receptor dectin-1 to the phagosomal membrane of macrophages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available