4.6 Article

Enabling High-Rate and High-Areal-Capacity Zn Deposition via an Interfacial Preferentially Adsorbed Molecular Layer

Journal

ACS ENERGY LETTERS
Volume 8, Issue 1, Pages 31-39

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.2c02339

Keywords

-

Ask authors/readers for more resources

By utilizing γ-butyrolactone (GBL) as an organic solvent, the deposition behavior and performance of Zn anodes can be regulated, allowing for improved electrochemical performance under high current densities and large areal capacities due to reduced dendrite growth and enhanced reaction reversibility. The strong interactions between GBL molecules and Zn2+ and Zn slab were confirmed by DFT calculations, and the preferential adsorption of GBL at the Zn/electrolyte interface was highlighted through Raman spectra analysis. Electrochemical tests demonstrated the effectiveness of this strategy, achieving a supporting current density of 30 mA cm(-1) and a cycle life of 5000 h for the Zn anode using GBL.
The poor electrochemical performance of Zn anodes at high current densities and large areal capacities is a tough challenge due to the accelerated dendrite growth and worsened reaction irreversibility. Herein, an ester-based organic, gamma-butyrolactone (GBL), is utilized to regulate the deposition behaviors and performance of the Zn anode. Through DFT calculations, the strong interactions of GBL molecules with Zn2+ and Zn slab were confirmed. In addition, improved interfacial properties were achieved, including the reduced potential of hydrogen evolution and enhanced wetting ability. Significantly, the concentration distribution difference of GBL between the Zn/electrolyte interface and the electrolyte was investigated by Raman spectra, and the interfacial preferential adsorption of GBL was highlighted. Electrochemical tests indicated that the supporting current density and the cycle life of the Zn anode using GBL could reach 30 mA cm(-1) and 5000 h, respectively, proving the effectiveness of this strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available