4.6 Article

Ultrathin Light-Emitting Diodes with External Efficiency over 26% Based on Resurfaced Perovskite Nanocrystals

Journal

ACS ENERGY LETTERS
Volume -, Issue -, Pages 927-934

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.2c02802

Keywords

-

Ask authors/readers for more resources

Light-emitting diodes (LEDs) based on perovskite nanocrystals (PNCs) have attracted great attention for their high color purity, brightness, and luminous efficiency. However, the development of effective light outcoupling strategies to further enhance device performance is still a challenge.
Light-emitting diodes based on perovskite nanocrystals (PNCsLEDs) have gained great interest for next-generation display and lighting technologies prized for their color purity, high brightness, and luminous efficiency which approach the intrinsic limit imposed by light extraction from the device structure. Although the time is ripe for the development of effective light outcoupling strategies to further boost the device performance, this technologically relevant aspect of PNC-LEDs is still without a definitive solution. Here, following theoretical guidelines and without the integration of complex photonic structures, we realize stable PNC-LEDs with external quantum efficiency (EQE) as high as 26.7%. Key to such performance is channeling the recombination zone in PNC emissive layers as thin as 10 nm, which we achieve by finely balancing charge transport using CsPbBr3 PNCs resurfaced with a nickel oxide layer. The ultrathin approach is general and, in principle, applicable to other perovskite nanostructures for fabricating highly efficient, color-tunable transparent LEDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available