4.7 Article

Ecofriendly and radiation shielding properties of newly developed epoxy with waste marble and WO3 nanoparticles

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2022.11.128

Keywords

Epoxy resin; Waste marble; WO 3 nanoparticles; Linear attenuation coefficient

Ask authors/readers for more resources

Research on protection techniques against harmful effects of gamma radiation has increased recently. Developing radiation-resistant materials with high radiation resistance and absorption capability for different types of ionizing radiation shows promise. This study presents the preparation and examination of a novel polymer doped with various concentrations of WO3 for radiation shielding. The experimental results demonstrate the effectiveness of the polymer's radiation shielding characteristics and provide insights for predicting similar shielding properties.
Research into protection techniques from harmful effects of gamma radiation have increased contemporarily. The development of radiation-resistant materials having a high radiation resistance and absorption of different types of ionizing radiation could offer promising solutions to this matter. For this purpose, the preparation and examination of a novel type of polymer doped with various WO3 concentrations are presented in this study. To accomplish our main objective, we evaluated the effectiveness of their radiation shielding against gamma radiation from 137Cs, 60Co, and 241Am. At all investigated energies, the measured and theoretical linear attenuation coefficient (LAC) values are highly similar, proving that the experimental LAC values can be used to reliably predict other radiation shielding characteristics. The half value layer (HVL) values decreased as the samples' WO3 level rises indicating that increasing the amount of WO3 in these samples increases their radiation shielding effectiveness. In addition, it was found a positive correlation between radiation energy and the mean free path (MFP) values. At 0.060 MeV, the MFP values are equal to 1.374 cm, 0.691 cm, 0.521 cm, and 0.369 cm at concentrations of 0, 10, 20, and 25% WO3, respectively reflecting that the MFP is reduced by 3.7 times due to the addition of 20% WO3 nanoparticles. From the transmission factor, it was found that improving the shielding ability of the proposed materials could be achieved by increasing and adjusting the thickness of the absorber depending on the required energy range used. It is noteworthy that the present studied samples (epoxy + waste marble + nano-WO3) that have exhibited a greater shielding ability than other nanoparticles added polymers like (Epoxy + nano-MgO30), and (silicone rubber + nano-WO330).(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available