4.6 Article

Population genetic analyses unveiled genetic stratification and differential natural selection signatures across the G-gene of viral hemorrhagic septicemia virus

Journal

FRONTIERS IN GENETICS
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2022.982527

Keywords

viral hemorrhagic septicemia virus; population genetics; phylogenetic; selection pressure; evolutionary distinction

Ask authors/readers for more resources

This study aimed to infer the genetic diversity and evolutionary dynamics of global Viral hemorrhagic septicemia virus isolates based on G-gene sequences. The results revealed that the virus is stratified into five genetically distinct subpopulations, and the genotype Ia samples may be stratified into subpopulations based on spatiotemporal distribution.
Introduction: Viral hemorrhagic septicemia virus (VHSV) is the most lethal pathogen in aquaculture, infecting more than 140 fish species in marine, estuarine, and freshwater environments. Viral hemorrhagic septicemia virus is an enveloped RNA virus that belongs to the family Rhabdoviridae and the genus Novirhabdovirus. The current study is designed to infer the worldwide Viral hemorrhagic septicemia virus isolates' genetic diversity and evolutionary dynamics based on G-gene sequences. Methods: The complete G-gene sequences of viral hemorrhagic septicemia virus were retrieved from the public repositories with known timing and geography details. Pairwise statistical analysis was performed using Arlequin. The Bayesian model-based approach implemented in STRUCTURE software was used to investigate the population genetic structure, and the phylogenetic tree was constructed using MEGA X and IQ-TREE. The natural selection analysis was assessed using different statistical approaches, including IFEL, MEME, and SLAC. Results and Discussion: The global Viral hemorrhagic septicemia virus samples are stratified into five genetically distinct subpopulations. The STRUCTURE analysis unveiled spatial clustering of genotype Ia into two distinct clusters at K = 3. However, at K = 5, the genotype Ia samples, deposited from Denmark, showed temporal distribution into two groups. The analyses unveiled that the genotype Ia samples stratified into subpopulations possibly based on spatiotemporal distribution. Several viral hemorrhagic septicemia virus samples are characterized as genetically admixed or recombinant. In addition, differential or subpopulation cluster-specific natural selection signatures were identified across the G-gene codon sites among the viral hemorrhagic septicemia virus isolates. Evidence of low recombination events elucidates that genetic mutations and positive selection events have possibly driven the observed genetic stratification of viral hemorrhagic septicemia virus samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available