4.7 Article

Steady-state Peierls transition in nanotube quantum simulator

Journal

NPJ QUANTUM INFORMATION
Volume 9, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41534-022-00675-4

Keywords

-

Ask authors/readers for more resources

Quantum dots placed on a vibrating nanotube provide a platform for studying electron-phonon interactions, which has promising prospects for discovering new quantum materials and understanding strong correlation effects. By coupling the dots to an electronic reservoir, the state of the system can be easily prepared. Our study shows that for certain coupling strengths, the system undergoes a Peierls transition into an insulating regime with charge-density wave order in the steady state, resulting from the competition between electronic Coulomb repulsive interactions and phonon-induced attractive interactions. The transport phenomena observed can serve as fingerprints of electronic correlations. We also present powerful numerical methods to capture the physics of this open electron-phonon system with a large number of phonons. Our work paves the way for studying and detecting correlated electron-phonon physics with current experimental techniques in nanotube quantum simulators.
Quantum dots placed along a vibrating nanotube provide a quantum simulation platform that can directly address the electron-phonon interaction. This offers promising prospects for the search of new quantum materials and the study of strong correlation effects. As this platform is naturally operated by coupling the dots to an electronic reservoir, state preparation is straightforwardly achieved by driving into the steady state. Here we show that for intermediate electron-phonon coupling strength, the system with spin-polarized quantum dots undergoes a Peierls transition into an insulating regime which exhibits charge-density wave order in the steady state as a consequence of the competition between electronic Coulomb repulsive interactions and phonon-induced attractive interactions. The transport phenomena can be directly observed as fingerprints of electronic correlations. We also present powerful methods to numerically capture the physics of such an open electron-phonon system at large numbers of phonons. Our work paves the way to study and detect correlated electron-phonon physics in the nanotube quantum simulator with current experimentally accessible techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available