4.4 Article

Ameliorative role of foliar Zn-lysine application on wheat (Triticum aestivum L.) stressed by Tannery Wastewater

Journal

Publisher

SPRINGER
DOI: 10.1007/s12298-022-01265-6

Keywords

Chromium; Zn-lysine; Photosynthetic; Oxidative stress; Phytotoxicity; Wheat

Categories

Funding

  1. HEC funder project
  2. [2017/HEC/RD/NRPU/8996]

Ask authors/readers for more resources

This study found that foliar application of amino acid chelate fertilizer, Zn-lysine, can mitigate the phytotoxicity of tannery wastewater on wheat plants and promote their growth and development.
Tannery industries discharge a high concentration of chromium (Cr) along with other heavy metals, which are hazardous for all life forms. With increasing shortage of freshwater, tannery effluent is frequently used for crop an irrigation, causing damage to plants' health. In order to address this challenge, amino acid chelate fertilizer was used to investigate the impact on wheat crops against tannery waste water. Tannery wastewater (TW) was used at different levels such as 0%, 25%, 50%, and 100% with an amendment of foliar Zn-lysine (Zn-lys) at30 mg/L. This research highlighted the positive correlation of Zn-lysine on the morpho-physiological, biochemical, and gas exchange traits under different levels of tannery wastewater. The findings of this study showed that the application of Cr-rich tannery wastewater at different treatment levels resulted in a significant reduction in plant height (23%, 31%, and 36%), the number of tillers (21%, 30%, and 43%), spike (19%, 36%, and 55%) and dry weight (DW) of grains (10%, 25%, and 49%) roots DW (17%, 41%, 56%), and shoots DW (22%, 32%, and 47%) as compared to control. Foliar-applied Zn-lys positively enhanced photosynthetic attributes, antioxidant enzymes activities and gas exchange traits by reducing the oxidative stress alone and under Cr stress. The concentration of Cr in roots (21%, 37%, 38%) and shoots (11%, 36%, 37%) was reduced by the foliar application of Zn-lys at different treatment levels. These findings conclude that Zn-lys served as a protector for the growth and development of wheat and has an incredible potential to inhibit the phytotoxicity induced by excess Cr.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available