4.5 Article

Tunable metamaterial absorber based on VO2-graphene

Journal

MATERIALS RESEARCH EXPRESS
Volume 9, Issue 11, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/2053-1591/ac9fac

Keywords

VO2-graphene; tunable metamaterial absorber; frequency band switchable; polarization insensitive

Funding

  1. Natural Science Foundation of Heilongjiang Province
  2. [LH2022F040]

Ask authors/readers for more resources

In this paper, a tunable multilayer metamaterial absorber is proposed, which can achieve absorption in different frequency bands by adjusting the properties of VO2-graphene mixed structure layer and VO2 layer. The mechanism of VO2-graphene on the absorption performance is explained by studying the electric field distribution and equivalent impedance. Moreover, the absorber is insensitive to polarization and has potential application value in the terahertz field.
In this paper, a tunable multilayer metamaterial absorber is proposed, which is composed of VO2-graphene mixed structure layer, PDMS dielectric layer, VO2 layer, PDMS dielectric layer and bottom metal film layer. The simulation results show that when VO2 is in the insulating phase and the Fermi level of graphene is 0.9 eV, the absorption peak of 0.75-1.15 THz is generated by the interaction resonance of graphene and bottom metal. When VO2 is in metal phase and the Fermi level of graphene is 0 eV, the absorption peak of 2.5-4.5 THz is generated by the resonance of vanadium dioxide. Therefore, the tunable switching between two different frequency bands can be realized. Moreover, the dual regulation of both vanadium dioxide conductivity and graphene Fermi energy level can also modulate the absorption amplitude and broaden absorption band. In order to explain the mechanism of VO2-graphene on the absorption performance, the electric field distribution and equivalent impedance of the absorber are discussed and analyzed in this paper. In addition, the absorption performances at variable incidence angles for both TE and TM polarizations are investigated and the absorber is insensitive to polarization. Therefore, the absorber has potential application value in the terahertz field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available