4.6 Article

Effect of Varying Hot Extrusion Temperatures on the Properties of a Sinterless Turning Induced Deformation Processed Eco-Friendly Mg-Zn-Ca Alloy

Journal

CRYSTALS
Volume 13, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/cryst13010003

Keywords

magnesium alloy; TID (turning induced deformation); hybrid manufacturing; hot extrusion; powder metallurgy; mechanical properties; thermal behavior; corrosion behavior

Ask authors/readers for more resources

In this study, the Mg-4Zn-1Ca (wt. %) alloy was processed using disintegrated melt deposition, turning induced deformation technique, hot extrusion, and sinterless powder metallurgy. Different extrusion temperatures were tested to investigate their effect on the microstructure and properties of TID-processed Mg-4Zn-1Ca alloys. The results showed that the combination of TID and extrusion temperature significantly influenced grain refinement, with the best microhardness and compressive yield strength values observed at 300 degrees C. The properties of the alloys varied with different extrusion temperatures, indicating the potential of the sinterless TID technique for recycling and manufacturing magnesium-based materials.
In this work, Mg-4Zn-1Ca (wt. %) alloy was primarily processed by disintegrated melt deposition. The resulting ingots were further pre-processed by the turning induced deformation technique (TID), and the turnings were subsequently consolidated by the hot extrusion process and sinterless powder metallurgy. A range of extrusion temperatures (200, 250 and 300 degrees C) was tested to understand the effect of the extrusion temperature on tailoring the microstructure and properties of TID-processed Mg-4Zn-1Ca (wt. %) alloys. The results indicated that the combined effect of TID and extrusion temperature plays a significant role in grain refinement, specifically at 200 degrees C. Overall, the sample extruded at 300 degrees C showed the best microhardness and compressive yield strength values. The resistance to ignition and wet corrosion increased and decreased, respectively, when the extrusion temperature was increased. Variations of basal texture and fine grain strengthening due to variations of extrusion temperature led to different properties peaking at different extrusion temperatures. Microstructure-property relationships are therefore discussed, highlighting that different extrusion temperatures have characteristic effects in improving and lowering the properties. Many of the investigated properties of TID-processed alloys exceed that of commercial Mg alloys, suggesting the capability of the sinterless TID technique to develop as an economical industrial way of recycling and manufacturing magnesium-based materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available