4.6 Article

Imaging the Permittivity of Thin Film Materials by Using Scanning Capacitance Microscopy

Journal

APPLIED SCIENCES-BASEL
Volume 12, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/app122311979

Keywords

imaging techniques; relative permittivity; thin film materials; scanning capacitance microscopy

Ask authors/readers for more resources

The method of imaging permittivity of thin film materials using a scanning capacitance microscope (SCM) provides a novel approach with nanometer resolution for studying photoelectric materials under room temperature atmospheric conditions.
Recently, great advances had been made by using scanning probe microscopy (SPM) to quantify the relative permittivity of thin film materials on a nanometer scale. The imaging techniques of permittivity for thin film materials with SPM, especially for photoelectric materials, have not been fully researched until now. Here, we presented a method to image permittivity of thin film materials by using a scanning capacitance microscope (SCM). This method combined the quantitative measurement by using SCM with the capacitance gradient-distance fitting curve to obtain the two-dimensional (2D) permittivity image at room temperature under atmospheric conditions. For the demonstration, a 2D permittivity image of film of molybdenum oxide (MoO3), a kind of photoelectric material, was acquired. From the image, it could be found that the average values of permittivity of MoO3 film and of MoO3 film-doped NaCl were about 8.0 and 9.5, respectively. The experimental results were quantitatively consistent with other experimental results of the same material. The reported technique here could provide a novel method for imaging the relative permittivity with nanometer resolution and be helpful for the study of photoelectric materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available