4.6 Article

Composition Component Influence on Concrete Properties with the Additive of Rubber Tree Seed Shells

Journal

APPLIED SCIENCES-BASEL
Volume 12, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/app122211744

Keywords

rubber tree seed shell; concrete; coarse aggregate; strength features; strain features

Funding

  1. Don State Technical University

Ask authors/readers for more resources

This study analyzed the impact of partially substituting coarse aggregate with rubber tree seed shells on concrete properties and determined the optimal composition for improved strength. Results showed that replacing 4% of the coarse filler with rubber tree seed shells led to the highest increase in strength features.
The growth in the volume of modern construction and the manufacture of reinforced concrete structures (RCSs) presents the goal of reducing the cost of building materials without compromising structures and opens questions about the use of environmentally friendly natural raw materials as a local or full replacement of traditional mineral components. This can also solve the actual problem of disposal of unclaimed agricultural waste, the features of which may be of interest to the construction industry. This research aimed to analyze the influence of preparation factors on concrete features with partial substitution of coarse aggregate (CA) with rubber tree (RT) seed shells and to determine the optimal composition that can make it possible to attain concrete with improved strength features. CA was replaced by volume with RT seed shells in an amount from 2% to 16% in 2% increments. Scanning electronic microscopy was employed to investigate the structure of the obtained concrete examples. The maximum increase in strength features was observed when replacing coarse filler with 4% RT seed shell by volume and amounted to, for compressive and axial compressive strength (CS) and tensile and axial tensile strength (TS) in twisting, 6% and 8%, respectively. The decrease in strain features under axial compression and under axial tension was 6% and 5%, respectively. The modulus of elasticity increased to 7%. The microstructure of hardened concrete samples with partial replacement of CA with RT seed shells in the amount of 2%, 4% and 6% was the densest with the least amount of pores and microcracks in comparison with the structure of the sample of the control composition, as well as samples with the replacement of CA with RT seed shells in an amount of more than 6%. The expedient effective replacement of CA with RT shells led to a reduction in battered stone of up to 8%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available