4.8 Article

Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode

Journal

JOURNAL OF POWER SOURCES
Volume 319, Issue -, Pages 159-167

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.04.044

Keywords

Layered nanostructure; Nanosheet; Vertically aligned nanoaray; Graphene; Oxygen evolution

Funding

  1. Scientific Research Foundation for the Returned Overseas Chinese Scholars
  2. Ministry of Education of China
  3. Municipal Natural Science Foundation of Chongqing [cstc2015jcyjA50029]
  4. Fundamental Research Funds for the Central Universities [XDJK2015C026]
  5. Start-up grant from Southwest University, China [SWU114090]

Ask authors/readers for more resources

The sluggish oxygen evolution reaction (OER) represents a major kinetic bottleneck in water splitting. Herein we report the synthesis of a novel Ni foam (NF) supported 3-D vertically aligned and interconnected layered CoO nanosheet array with controlled density, layer thickness, and interlayer spacing, and the conformal self-assembly of graphene on this nanosheet array. The obtained CoO layered nanosheet/graphene hybrid nanoarray was directly used as an OER electrode, showing a current density of 10 mA cm(-2) at an overpotential of 330 mV and a Tafel slope of 79 mV dec(-1), both of which are much lower than pristine NF and the nanosheet array without graphene, and are among the lowest reported for Co-based OER catalysts and transition metal oxide-based ones measured under the same conditions. In addition, it can retain 92.4% of the current density after 66 h of chronoamperometry testing at a potential of 1.0 V vs. SCE, and 94.3% of the current density at 1.0 V vs. SCE after 200 cyclic voltammetry cycles (0-1.0 V vs. SCE). The excellent catalytic activity and stability toward OER are ascribed to the 3-D NF supported robustly grown networked layered nanosheet array structure and the synergistic effects between CoO layered nanosheets and graphene. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available