4.7 Article

Colossal barocaloric effects in adamantane derivatives for thermal management

Journal

APL MATERIALS
Volume 10, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0127667

Keywords

-

Funding

  1. MINECO Project [PID2020-112975GB-I00]
  2. DGU [2017SGR-42]

Ask authors/readers for more resources

Plastic crystals have the potential to be used in environmentally friendly cooling and waste heat management. This study investigates the pressure-induced caloric response of three plastic crystals and finds that two of them exhibit significant barocaloric effects under small pressure changes. The transition temperatures above ambient make these compounds suitable for waste heat management and industrial cooling and heat pumping.
Plastic crystals are currently attracting interest because their solid-state caloric functionality could be used to tackle climate change in two critical areas: (i) more environmentally friendly cooling and heating driven by pressure and (ii) passive waste heat management. Here, we suggest that plastic crystals could also be used for active pressure-assisted (i.e., barocaloric) waste heat management. In contrast to the barocaloric cooling/heating cycle, for active barocaloric waste heat management, the hysteresis may not be a constraint and transition temperatures above ambient are usually desired. In contrast to passive waste heat management, the application of pressure can be an advantage to actively control the absorption and delivery of heat by the plastic crystal. Here, we have investigated the pressure-induced caloric response at the first-order phase transitions occurring above room temperature of three plastic crystals derived from adamantane: 1-adamantanol, 2-adamantanol, and 2-methyl-2-adamantanol. Colossal barocaloric effects have been found for two of them under small pressure changes of 50 MPa. This behavior occurs thanks to a colossal transition entropy change and a large transition sensitivity to pressure, which can simultaneously take place due to enormous transition volume changes. The balance between configurational and volumic entropy changes at the transition has also been discussed. For 2-adamantanol, in addition to the transition to the plastic phase, the less energetic triclinic-to-monoclinic transition at lower temperatures has also been analyzed. The transition temperatures above ambient make these compounds suitable for waste heat management and, thanks to a small hysteresis, also for industrial cooling and heat pumping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available