4.8 Article

Humidity-Responsive RGB-Pixels via Swelling of 3D Nanoimprinted Polyvinyl Alcohol

Journal

ADVANCED SCIENCE
Volume 10, Issue 2, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202204469

Keywords

Fabry-Perot; nanoimprint; nanoparticle; polyvinyl alcohol; tunable coloration

Ask authors/readers for more resources

This study investigates humidity-responsive nano pixels with a 700 nm resolution, demonstrating full standard RGB gamut coverage and a millisecond-response time. The color pixels are designed as Fabry-Perot etalons and consist of an aluminum mirror substrate, humidity-responsive polyvinyl alcohol spacer, and a top layer of disordered silver nanoparticles. The experiment shows that the volume change of the polyvinyl alcohol reaches up to 62.5% when the relative humidity is manipulated from 20 to 90%. The disordered silver nanoparticle layer enhances the speed of absorption and swelling to the millisecond level.
Humidity-responsive structural coloration is actively investigated to realize real-time humidity sensors for applications in smart farming, food storage, and healthcare management. Here, humidity-tunable nano pixels are investigated with a 700 nm resolution that demonstrates full standard RGB (sRGB) gamut coverage with a millisecond-response time. The color pixels are designed as Fabry-Perot (F-P) etalons which consist of an aluminum mirror substrate, humidity-responsive polyvinyl alcohol (PVA) spacer, and a top layer of disordered silver nanoparticles (NPs). The measured volume change of the PVA reaches up to 62.5% when the relative humidity (RH) is manipulated from 20 to 90%. The disordered silver NP layer permits the penetration of water molecules into the PVA layer, enhancing the speed of absorption and swelling down to the millisecond level. Based on the real-time response of the hydrogel-based F-P etalons with a high-throughput 3D nanoimprint technique, a high-resolution multicolored color print that can have potential applications in display technologies and optical encryption, is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available