4.8 Article

Ni-Ion-Chelating Strategy for Mitigating the Deterioration of Li-Ion Batteries with Nickel-Rich Cathodes

Journal

ADVANCED SCIENCE
Volume 10, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202205918

Keywords

chelating agents; electrolyte additives; lithium-ion batteries; nickel-rich cathodes; transition metal dissolution

Ask authors/readers for more resources

The use of 1,2-bis(diphenylphosphino)ethane (DPPE) can effectively reduce the dissolution of nickel ions and electrolyte decomposition, and improve the cycle life and safety of lithium-ion batteries.
Ni-rich cathodes are the most promising candidates for realizing high-energy-density Li-ion batteries. However, the high-valence Ni4+ ions formed in highly delithiated states are prone to reduction to lower valence states, such as Ni3+ and Ni2+, which may cause lattice oxygen loss, cation mixing, and Ni ion dissolution. Further, LiPF6, a key salt in commercialized electrolytes, undergoes hydrolysis to produce acidic compounds, which accelerate Ni-ion dissolution and the interfacial deterioration of the Ni-rich cathode. Dissolved Ni ions migrate and deposit on the surface of the graphite anode, causing continuous electrolyte decomposition and threatening battery safety by forming Li dendrites on the anode. Herein, 1,2-bis(diphenylphosphino)ethane (DPPE) chelates Ni ions dissolved from the Ni-rich cathode using bidentate phosphine moieties and alleviates LiPF6 hydrolysis via complexation with PF5. Further, DPPE reduces the generation of corrosive HF and HPO2F2 substantially compared to the amounts observed using trimethyl phosphite and tris(trimethylsilyl) phosphite, which are HF-scavenging additives. Li-ion cells with Ni-rich cathodes and graphite anodes containing DPPE exhibit remarkable discharge capacity retentions of 83.4%, with high Coulombic efficiencies of >99.99% after 300 cycles at 45 degrees C. The results of this study will promote the development of electrolyte additives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available