4.8 Article

Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

Journal

JOURNAL OF POWER SOURCES
Volume 328, Issue -, Pages 289-299

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2016.07.090

Keywords

Lithium-sulfur battery; Parameter estimation; System identification; Battery model

Funding

  1. Innovate UK [TS/L000903/1]
  2. EPSRC [EP/L505286/1, EP/L505298/1]
  3. Engineering and Physical Sciences Research Council [EP/L505298/1, EP/L505286/1] Funding Source: researchfish
  4. EPSRC [EP/L505286/1, EP/L505298/1] Funding Source: UKRI

Ask authors/readers for more resources

Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 degrees C to 50 degrees C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available