4.7 Article

L-Lysine-Coated Magnetic Core-Shell Nanoparticles for the Removal of Acetylsalicylic Acid from Aqueous Solutions

Journal

NANOMATERIALS
Volume 13, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/nano13030514

Keywords

nanoadsorbents; magnetic nanocomposite; magnetic separation; surface coating; pollutant removal; water remediation; pharmaceuticals

Ask authors/readers for more resources

This paper focuses on the fabrication, characterization, and application of ferrite-based magnetic nanoparticles functionalized with L-lysine as potential nanoadsorbents to remove acetylsalicylic acid (ASA) from water. The results show that these nanoadsorbents can efficiently remove ASA from water and have the characteristics of reusability.
Nanotechnologies based on magnetic materials have been successfully used as efficient and reusable strategies to remove pharmaceutical residuals from water. This paper focuses on the fabrication, characterization, and application of ferrite-based magnetic nanoparticles functionalized with L-lysine as potential nanoadsorbents to remove acetylsalicylic acid (ASA) from water. The proposed nanomaterials are composed of highly magnetic and chemically stable core-shell nanoparticles covered with an adsorptive layer of L-lysine (CoFe2O4-gamma-Fe2O3-Lys). The nanoadsorbents were elaborated using the coprecipitation method in an alkaline medium, leading to nanoparticles with two different mean sizes (13.5 nm and 8.5 nm). The samples were characterized by XRD, TEM, FTIR, XPS, Zetametry, BET, and SQUID magnetometry. The influence of time, pH, and pollutant concentration was evaluated from batch studies using 1.33 g/L of the nanoadsorbents. The Freundlich isotherm best adjusted the adsorption data. The adsorption process exhibited a pseudo-second-order kinetic behavior. The optimal pH for adsorption was around 4-6, with a maximum adsorption capacity of 16.4 mg/g after 150 min of contact time. Regeneration tests also showed that the proposed nanomaterials are reusable. The set of results proved that the nanoadsorbents can be potentially used to remove ASA from water and provide relevant information for their application in large-scale designs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available