4.8 Article

Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

Journal

JOURNAL OF POWER SOURCES
Volume 321, Issue -, Pages 201-209

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.04.140

Keywords

Fast charging; Battery degradation modes; Lithium iron phosphate; Incremental capacity analysis; Mechanistic model simulations

Funding

  1. Spanish Ministry of Economy and Competitiveness [DPI2013-46541-R]
  2. Principality of Asturias Government [FC-15-GRUPINI4-073]

Ask authors/readers for more resources

One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available