4.7 Article

Interaction of Colloidal Gold Nanoparticles with Urine and Saliva Biofluids: An Exploratory Study

Journal

NANOMATERIALS
Volume 12, Issue 24, Pages -

Publisher

MDPI
DOI: 10.3390/nano12244434

Keywords

gold nanoparticles; protein adsorption; protein corona; saliva; urine; LC-MS; MS

Ask authors/readers for more resources

The use of gold nanoparticles in drug delivery, photothermal or photodynamic therapy, and biosensing requires understanding of the protein corona formed on the nanoparticles' surface. In this study, the interaction between gold nanospheres, nanorods, nanoflowers, and saliva or urine was investigated. The results showed changes in the surface properties of gold nanoparticles, indicating the presence of biomolecules. Liquid chromatography with tandem mass spectrometry was used to analyze the proteins adsorbed on the nanoparticles' surface. Results indicated the adsorption of proteins with high sulfur content, and the competition between proteins and nanoparticle morphology.
The use of gold nanoparticles for drug delivery, photothermal or photodynamic therapy, and biosensing enhances the demand for knowledge about the protein corona formed on the surface of nanoparticles. In this study, gold nanospheres (AuNSs), gold nanorods (AuNRs), and gold nanoflowers (AuNFs) were incubated with saliva or urine. After the interaction, the surface of gold nanoparticles was investigated using UV-VIS spectroscopy, zeta potential, and dynamic light scattering. The shifting of the localized surface plasmon resonance (LSPR) band, the increase in hydrodynamic diameter, and the changes in the surface charge of nanoparticles indicated the presence of biomolecules on the surface of AuNSs, AuNRs, and AuNFs. The incubation of AuNFs with saliva led to nanoparticle aggregation and minimal protein adsorption. AuNSs and AuNRs incubated in saliva were analyzed through liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the 96 proteins adsorbed on the surface of the gold nanoparticles. Among the 20 most abundant proteins identified, 14 proteins were common in both AuNSs and AuNRs. We hypothesize that the adsorption of these proteins was due to their high sulfur content, allowing for their interaction with gold nanoparticles via the Au-S bond. The presence of distinct proteins on the surface of AuNSs or AuNRs was also investigated and possibly related to the competition between proteins present on the external layers of corona and gold nanoparticle morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available