4.8 Article

In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

Journal

JOURNAL OF POWER SOURCES
Volume 318, Issue -, Pages 220-227

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.03.100

Keywords

LiFePO4/carbon composites; In-situ synthesis; Micro-nano hierarchical structure; Cathode material; Lithium ion batteries

Funding

  1. National Natural Science Foundation of China [51372115, 11575084]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (similar to 100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 gm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g(-1) and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of similar to 60 mAh g(-1), exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 13 g cm(-3). What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available