4.6 Article

A melanin-inspired robust aerogel for multifunctional water remediation

Journal

MATERIALS HORIZONS
Volume 10, Issue 3, Pages 1020-1029

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2mh01474b

Keywords

-

Ask authors/readers for more resources

Inspired by melanin, researchers have created a multifunctional aerogel for water remediation. The aerogel effectively removes organic dyes and heavy metal ions contaminants in wastewater, while also exhibiting excellent underwater oil resistance and oil-water separation ability. It has an impressive evaporation rate and efficiency under sunlight, making it ideal for long-term water evaporation. This melanin-inspired aerogel offers new strategies for developing robust photothermal devices for solar-driven water remediation.
Solar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation via a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde. Benefiting from the superhydrophilicity, underwater superoleophobicity, and synergistic coordination effects, the resulting aerogel not only showed excellent performances in underwater oil resistance and oil-water separation ability, but also removed organic dyes and heavy metal ions contaminants in wastewater simultaneously. Moreover, owing to its admirable light harvesting capacity and porous microstructure for fast water transportation, the aerogel-based evaporator exhibited an excellent evaporation rate of 1.42 kg m(-2) h(-1) with a 91% evaporation efficiency under 1 sun illumination, which can be reused for long-term water evaporation. Note that such a stable evaporation rate could be maintained even in wastewater containing complex multicomponent contaminants. Outdoor evaporation experiments for lotus pond wastewater under natural sunlight also proved its great potential in practical applications. All those promising features of this all-in-one melanin-inspired aerogel may provide new strategies for the development of robust photothermal devices for multifunctional solar-driven water remediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available