4.6 Article

Sugar perception in honeybees

Journal

FRONTIERS IN PHYSIOLOGY
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2022.1089669

Keywords

AmGr1; AmGr2; AmGr3; Xenopus oocytes; sugar responsiveness; proboscis extension response (PER); gustatory receptors (Grs); honeybee taste perception

Categories

Ask authors/readers for more resources

This study investigated the functions of three sugar receptors in honeybees through gene knockout, electrophysiology, and behavior tests. The results showed that AmGr1 can perceive multiple sugars, AmGr2 acts as a co-receptor of AmGr1, and AmGr3 is a specific fructose receptor. This study is the first to comprehensively examine sugar perception at the receptor level and in vivo in honeybees. The findings suggest that honeybees rely on two gustatory receptors to sense all relevant sugars.
Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available