4.8 Article

Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene

Journal

JOURNAL OF POWER SOURCES
Volume 308, Issue -, Pages 166-171

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.01.062

Keywords

Lithium Polysulfides; Defective graphene; Li-S batteries; DFT

Funding

  1. Bundesministerium fur Bildung and Forschung (BMBF)

Ask authors/readers for more resources

Adsorption of Li2Sx on pristine and defective (Stone-Wales (SW) and vacancy) graphene is studied using density functional theory. Results show that the interaction between Li2Sx and graphene is dominated by dispersion interaction (physisorption), which depends on the size of molecule as well as the existence and type of defect sites on graphene. We find that single Li2Sx molecules interact only slightly stronger to the SW sites than to the defect-free sites, but they interact very strongly with single-vacant defects. In the later cases, the vacant site catches one S atom from the Li2Sx molecule, leading to the formation of a Li2Sx-1 molecule, which adsorbs weakly on the created S-doped graphene. This study suggests that defect sites can not improve the ability of graphene to catch lithium polysulfides in Li-S batteries. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available