4.5 Article

Decitabine improves MMS-induced retinal photoreceptor cell damage by targeting DNMT3A and DNMT3B

Journal

FRONTIERS IN MOLECULAR NEUROSCIENCE
Volume 15, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2022.1057365

Keywords

retinitis pigmentosa; DNA methylation; DNMT inhibitor; methyl methanesulfonate; DNA damage response

Categories

Ask authors/readers for more resources

This study explored the relationship between DNA methylation and photoreceptor cell death in retinitis pigmentosa. It was found that the overexpression of DNA methylation regulator DNMT3A/3B was associated with the damage of photoreceptor cells caused by MMS. The application of DNMT inhibitor 5-aza-dC partially restored the damage caused by MMS. These findings provide new evidence for DNMTs as potential therapeutic targets in retinal degenerative diseases.
Introduction: Retinitis pigmentosa (RP) is a group of neurodegenerative retinopathies causing blindness due to progressive and irreversible photoreceptor cell death. The alkylating agent methyl methanesulfonate (MMS) can induce selective photoreceptor cell death, which is used to establish RP animal models. MMS induces DNA base damage by adding alkyl groups to DNA, and epigenetic modifications influence DNA damage response. Here, we aimed to explore the relationship between DNA methylation and DNA damage response in dying photoreceptors of RP.Methods: The mouse RP model was established by a single intraperitoneal injection of MMS. The retinal structure and function were assessed by H & E, OCT, TUNEL, and ERG at several time points. The expression of DNA methylation regulators was assessed by qPCR and Western blot. DNMT inhibitor 5-aza-dC was applied to inhibit the activity of DNA methyltransferases and improve the retinal photoreceptor damage.Results: The outer nuclear layer (ONL) and IS/OS layer were significantly thinner and the retinal function was impaired after MMS treatment. The cell death was mainly located in the ONL. The retinal damage induced by MMS was accompanied by hyperexpression of DNMT3A/3B. The application of DNMT inhibitor 5-aza-dC could suppress the expression level of DNMT3A/3B, resulting in the remission of MMS-induced photoreceptor cell damage. The ONL and IS/OS layers were thicker than that of the control group, and the retinal function was partially restored. This protective effect of 5-aza-dC was associated with the down-regulated expression of DNMT3A/3B.Conclusion: These findings identified a functional role of DNMT3A/3B in MMS-induced photoreceptor cell damage and provided novel evidence to support DNMTs as potential therapeutic targets in retinal degenerative diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available