4.6 Article

Performance and Stability of Doped Ceria-Zirconia Catalyst for a Multifuel Reforming

Journal

CATALYSTS
Volume 13, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/catal13010165

Keywords

reforming; hydrogen; sulfur tolerant catalysts; nickel; neodymium

Ask authors/readers for more resources

In this study, the catalytic behavior of nickel-based catalysts supported on ceria/zirconia, undoped and doped with lanthanum and neodymium, was investigated under steam reforming, partial oxidation and autothermal reforming reactions of different fuels. The catalytic properties were evaluated at a temperature of 800 degrees C, under atmospheric pressure, using steam/carbon and oxygen/carbon ratio, respectively, of S/C = 2.5 and O/C = 0.5. The doped catalyst showed better catalytic performance and resistance to deactivation due to improved distribution of nickel species and higher concentration of defect groups and oxygen vacancies on the catalyst surface.
In the present work, the catalytic behavior of nickel-based catalysts supported on ceria/zirconia, undoped and doped with lanthanum and neodymium (3.5Ni/Ce0.8La0.5Nd0.2Zr0.13O2-x), was investigated under different reactions: steam reforming, partial oxidation and autothermal reforming of different fuels (methane, biogas, and propane). The catalytic properties of these catalysts were evaluated at a temperature of 800 degrees C, under atmospheric pressure, at GSHV = 120,000 h(-1), using steam/carbon and oxygen/carbon ratio, respectively, of S/C = 2.5 and O/C = 0.5 and, in the case of autothermal conditions, with the addition of H2S (100 ppm) as a contaminant. Depending on the tested fuel, ATR, SR, and POX reactions over doped and undoped catalysts showed different results. In particular, the doped catalyst, due to neodymium and lanthanum doping, better distributed nickel species on the catalyst surface, promoting a higher concentration of defect groups and oxygen vacancies. This resulted in improved catalytic performance and resistance to deactivation. Endurance catalytic test also confirmed the beneficial effect of the doped catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available