4.6 Article

Perturbations in common and distinct inflammatory pathways associated with morning and evening fatigue in outpatients receiving chemotherapy

Journal

CANCER MEDICINE
Volume 12, Issue 6, Pages 7369-7380

Publisher

WILEY
DOI: 10.1002/cam4.5435

Keywords

cancer; chemotherapy; cytokines; fatigue; gene expression; inflammation; knowledge network; pathway impact analysis

Categories

Ask authors/readers for more resources

This study describes the common and distinct perturbed inflammatory pathways associated with morning and/or evening fatigue in cancer patients. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway was identified as a bottleneck pathway. The findings suggest potential targets for therapeutic interventions for this common and devastating clinical problem.
Background Moderate to severe fatigue occurs in up to 94% of patients with cancer. Recent evidence suggests that morning and evening fatigue are distinct dimensions of physical fatigue. The purposes of this study were to evaluate the transcriptome for common and distinct perturbed inflammatory pathways in patients receiving chemotherapy who reported low versus high levels of morning or low versus high levels of evening cancer-related fatigue. Methods Patients completed questionnaires during the week prior to their chemotherapy treatment. Severity of morning and evening fatigue was evaluated using the Lee Fatigue Scale. Gene expression and pathway impact analyses (PIA) were performed in two independent samples using RNA-sequencing (n = 357) and microarray (n = 360). Patterns of interactions between and among these perturbed pathways were evaluated using a knowledge network (KN). Results Across the PIA, nine perturbed pathways (FDR < 0.025) were common to both morning and evening fatigue, six were distinct for morning fatigue, and four were distinct for evening fatigue. KN (19 nodes, 39 edges) identified the phosphatidylinositol 3-kinase (PI3K)-Akt pathway node (perturbed in evening fatigue) with the highest betweenness (0.255) and closeness (0.255) centrality indices. The next highest betweenness centrality indices were seen in pathways perturbed in evening fatigue (i.e., nuclear factor kappa B: 0.200, natural killer cell-mediated cytotoxicity: 0.178, mitogen-activated protein kinase: 0.175). Conclusions This study describes perturbations in common and distinct inflammatory pathways associated with morning and/or evening fatigue. PI3K-Akt was identified as a bottleneck pathway. The analysis identified potential targets for therapeutic interventions for this common and devastating clinical problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available