4.5 Article

Kinetics of Water Transfer Between the LCST and UCST Thermoresponsive Blocks in Diblock Copolymer Thin Films Monitored by In Situ Neutron Reflectivity

Journal

ADVANCED MATERIALS INTERFACES
Volume 10, Issue 3, Pages -

Publisher

WILEY
DOI: 10.1002/admi.202201913

Keywords

block copolymer; dual thermoresponsive; kinetic water transfer; neutron reflectivity; thin film

Ask authors/readers for more resources

In situ neutron reflectivity is used to monitor the kinetics of water transfer in a thin film of a diblock copolymer with LCST and UCST thermoresponsive blocks. The film exhibits a complex response, including shrinkage, rearrangement, reswelling, and continuous transfer of D2O between the blocks. The presence of both LCST and UCST blocks in the film leads to different hydration kinetics and thermal response compared to a film with a single LCST transition.
The kinetics of water transfer between the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) thermoresponsive blocks in about 10 nm thin films of a diblock copolymer is monitored by in situ neutron reflectivity. The UCST-exhibiting block in the copolymer consists of the zwitterionic poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate), abbreviated as PSBP. The LCST-exhibiting block consists of the nonionic poly(N-isopropylacrylamide), abbreviated as PNIPAM. The as-prepared PSBP80-b-PNIPAM(400) films feature a three-layer structure, i.e., PNIPAM, mixed PNIPAM and PSBP, and PSBP. Both blocks have similar transition temperatures (TTs), namely around 32 degrees C for PNIPAM, and around 35 degrees C for PSBP, and with a two-step heating protocol (20 degrees C to 40 degrees C and 40 degrees C to 80 degrees C), both TTs are passed. The response to such a thermal stimulus turns out to be complex. Besides a three-step process (shrinkage, rearrangement, and reswelling), a continuous transfer of D2O from the PNIPAM to the PSBP block is observed. Due to the existence of both, LCST and UCST blocks in the PSBP80-b-PNIPAM(400 )film, the water transfer from the contracting PNIPAM, and mixed layers to the expanding PSBP layer occurs. Thus, the hydration kinetics and thermal response differ markedly from a thermoresponsive polymer film with a single LCST transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available