4.8 Article

Mesoporous Cladophora cellulose separators for lithium-ion batteries

Journal

JOURNAL OF POWER SOURCES
Volume 321, Issue -, Pages 185-192

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.04.115

Keywords

Separator; Cellulose; Crystallinity; Paper-making; Lithium-ion battery; Cladophora

Funding

  1. Swedish Foundation for Strategic Research
  2. Swedish Energy Agency
  3. Batterifonden (Project TriLi)
  4. StandUp for Energy
  5. Bo Rydin Stiftelsen
  6. Olle Byggmastare Stiftelsen

Ask authors/readers for more resources

Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 mu m, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm(-1) after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 degrees C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available