4.6 Article

Species-Specific Secondary Metabolites from Primula veris subsp. veris Obtained In Vitro Adventitious Root Cultures: An Alternative for Sustainable Production

Journal

SUSTAINABILITY
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/su15032452

Keywords

methylated flavonoid glycosides; primeverin; primulaverin; primulic acids; triterpene saponins; UPLC-MS; MS; MRM analyses

Ask authors/readers for more resources

Primula veris subsp. veris is a perennial herbaceous plant whose roots and flowers are valuable pharmaceutical raw materials. An in vitro adventitious root production method was developed to produce bioactive compounds in a controlled environment, leading to higher content compared to soil-grown plants.
Primula veris subsp. veris L. is a perennial herbaceous and medicinal plant species the roots and flowers of which are a source of valuable pharmaceutical raw materials. The plant tissues are used to produce expectorant and diuretic drugs due to their high content of triterpene saponins and phenolic glycosides. Underground roots of P. veris can be obtained only through a destructive process during the plant's harvesting. In the present study, an in vitro adventitious root production protocol was developed as an alternative way of production, focused on four species-specific secondary metabolites. Root explants were cultured in Murashing & Skoog liquid medium supplemented with 5.4 mu M alpha-naphthaleneacetic acid, 0.5 mu M kinetin, L-proline 100 mg/L, and 30 g/L sucrose, in the dark and under agitation. The effect of temperature (10, 15 and 22 degrees C) on biomass production was investigated. The content of two flavonoid compounds (primeverin and primulaverin), and two main triterpene saponins (primulic acid I and II) were determined after 60 days of culture and compared with 1.5-year-old soil-grown plants. The accumulated content (mg/g DW) of bioactive compounds of in vitro adventitious roots cultured under 22 degrees C was significantly higher than the other two temperatures of the study, being 9.71 mg/g DW in primulaverin, 0.09 mg/g DW in primeverin, 6.09 mg/g DW in primulic acid I, and 0.51 mg/g DW in primulic acid II. Compared to the soil-grown roots (10.23 mg/g DW primulaverin, 0.28 mg/g DW primeverin, 17.01 mg/g DW primulic acid I, 0.09 mg/g DW primulic acid II), the in vitro grown roots at 22 degrees C exhibited a 5.67-fold higher content in primulic acid II. However, primulic acid I and primeverin content were approximately three-fold higher in soil-grown roots, while primulaverin content were at similar levels for both in vitro at 22 degrees C and soil-grown roots. From our results, tissue culture of P. veris subsp. veris could serve not only for propagation but also for production of species-specific secondary metabolites such as primulic acid II through adventitious root cultures. This would therefore limit the uncontrolled collection of this plant from its natural environment and provide natural products free from pesticides in a sustainable way.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available