4.8 Article

Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 12, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41377-022-01046-6

Keywords

-

Categories

Ask authors/readers for more resources

A C-shape-split-ring-based phase discontinuity metasurface with a liquid crystal elastomer substrate is introduced for infrared modulation of terahertz wavefront. By manipulating the deflection of the substrate, controllable and broadband wavefront steering is achieved, with a maximum output angle change of 22 degrees at 0.68 THz. The liquid crystal elastomer metasurface also demonstrates the performance of a beam steerer, frequency modulator, and tunable beam splitter, which are highly desired in terahertz wireless communication and imaging systems.
Active metasurfaces are emerging as the core of next-generation optical devices with their tunable optical responses and flat-compact topography. Especially for the terahertz band, active metasurfaces have been developed as fascinating devices for optical chopping and compressive sensing imaging. However, performance regulation by changing the dielectric parameters of the integrated functional materials exhibits severe limitations and parasitic losses. Here, we introduce a C-shape-split-ring-based phase discontinuity metasurface with liquid crystal elastomer as the substrate for infrared modulation of terahertz wavefront. Line-focused infrared light is applied to manipulate the deflection of the liquid crystal elastomer substrate, enabling controllable and broadband wavefront steering with a maximum output angle change of 22 degrees at 0.68 THz. Heating as another control method is also investigated and compared with infrared control. We further demonstrate the performance of liquid crystal elastomer metasurface as a beam steerer, frequency modulator, and tunable beam splitter, which are highly desired in terahertz wireless communication and imaging systems. The proposed scheme demonstrates the promising prospects of mechanically deformable metasurfaces, thereby paving the path for the development of reconfigurable metasurfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available