4.6 Article

Dual-purpose tunnel oxide passivated contact on silicon photoelectrodes with high photovoltages for tandem photoelectrochemical devices enabling unassisted water splitting

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 11, Issue 8, Pages 4194-4204

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ta07996h

Keywords

-

Ask authors/readers for more resources

A tandem photoelectrochemical (PEC) water-splitting device consisting of two light absorbers with different bandgaps is developed. Silicon photoelectrodes with a bandgap of 1.12 eV are used as the low bandgap bottom cells of the tandem device. By applying a tunnel oxide passivated contact (TOPCon) on the front and back sides of a Si wafer, TOPCon Si photoelectrodes exhibit superior photovoltage and thermal stability. Two wired tandem PEC devices based on earth-abundant materials, a BiVO4 photoanode-TOPCon Si photocathode and a halide perovskite photocathode-TOPCon Si photoanode, are tested and show STH conversion efficiencies of 0.24% and 3.6%, respectively.
A tandem photoelectrochemical (PEC) water-splitting device for solar hydrogen production consists of two light absorbers with different bandgaps. Silicon photoelectrodes have been widely investigated as the low bandgap bottom cells of tandem devices because of their bandgap (1.12 eV). Herein, we apply a tunnel oxide passivated contact (TOPCon) on the front and back sides of a Si wafer to prepare a TOPCon Si PEC device. Because TOPCon has a SiO2 tunnel oxide layer providing superior surface passivation and working as a diffusion-blocking layer, TOPCon Si photoelectrodes exhibit superior photovoltage and thermal stability. Both photocathode and photoanode are tested over a broad pH range (0-14) and demonstrate high photovoltages of 640-650 mV under 1 sun illumination and excellent thermal stability by enduring a high processing temperature of up to 600 degrees C for 1 h in air. These advantages of TOPCon Si would provide high efficiency and great design flexibility for monolithic tandem cells. As a preliminary demonstration of the tandem integration, we test two wired tandem PEC devices based on earth-abundant materials, which are a BiVO4 photoanode-TOPCon Si photocathode and halide perovskite photocathode-TOPCon Si photoanode. These devices show STH conversion efficiencies of 0.24 and 3.6%, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available